2x^2+x^2=4096

Simple and best practice solution for 2x^2+x^2=4096 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2x^2+x^2=4096 equation:



2x^2+x^2=4096
We move all terms to the left:
2x^2+x^2-(4096)=0
We add all the numbers together, and all the variables
3x^2-4096=0
a = 3; b = 0; c = -4096;
Δ = b2-4ac
Δ = 02-4·3·(-4096)
Δ = 49152
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{49152}=\sqrt{16384*3}=\sqrt{16384}*\sqrt{3}=128\sqrt{3}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-128\sqrt{3}}{2*3}=\frac{0-128\sqrt{3}}{6} =-\frac{128\sqrt{3}}{6} =-\frac{64\sqrt{3}}{3} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+128\sqrt{3}}{2*3}=\frac{0+128\sqrt{3}}{6} =\frac{128\sqrt{3}}{6} =\frac{64\sqrt{3}}{3} $

See similar equations:

| 9x/2+27=81 | | 12x^7x-(5)=0 | | 5x-10=-(5x+25) | | -3=1-n-n | | 1.8-5.4+3.6x=2.7 | | 0.00x=8 | | 4x+3+2x+21=60 | | 50x-120=200 | | 12x^7x=5 | | 100x3=500x2 | | -3(k-62)=-18 | | 10-2z=3z+10 | | 2z+5+5z+2=10(z−1) | | 7x+5*3x+2=1 | | 2(3x-2)=4(2x-9) | | 9m−8m=4 | | 7+7x-2=47 | | 21-3c=-54 | | (4n-3)(2n-1)=63 | | 3/4(n+9)=-12 | | 67+20x=450+20x | | .03x=60 | | -80=-8(u-87) | | 2x+2-8=-16 | | 7x(3x+2)=3x+2 | | 8=5m-27+2m | | 4z+6+74=189 | | –10m=–6−9m | | 7x(3x+2)=5x | | −1/3(9x−15)−x=−13 | | -2m=-10+3m | | 1/7(63n-7)=-11+9n |

Equations solver categories